Как рассчитать энергию системы зарядов. Энергия взаимодействия электрических зарядов. Если токи протекают в сплошной среде, получаем

При удалении заряда в бесконечность

r2 = ∞ U=U2 = 0,

потенциальная энергия заряда q2 ,

находящегося в поле заряда q1

на расстоянии r

17. Потенциал. Потенциал поля точечного заряда.

Потенциальная энергия заряда q в поле n зарядов qi

Отношение U/q не зависит от величины заряда q и является энергетической характеристикой электростатического поля, называемой потенциалом .

Потенциал в точке электростатического поля – физическая величина численно равная потенциальной энергии единичного положительного заряда, помещенного в эту точку. Это скалярная величина.

В СИ φ измеряется в Вольтах [В = Дж/Кл]

1 В – потенциал такой точки поля, в которой заряд в 1 Кл обладает энергией 1 Дж.

Е - [Н/Кл = Н·м/Кл·м = (Дж/Кл)·(1/м) = В/м].

Потенциал поля точечного заряда


Потенциал является более удобной физической величиной по с равнению с напряженностью Е


Потенциальная энергия заряда в поле системы зарядов. Принцип суперпозиции для потенциалов.

Система точечных зарядов: q1 , q2 , …qn .

Расстояние от каждого заряда до некоторой точки пространства: r1 , r2 , …rn .

Работа, совершаемая над зарядом q электрическим полем остальных зарядов при его перемещении из одной точки в другую, равна алгебраической сумме работ, обусловленных каждым из зарядов в отдельности

ri 1 – расстояние от заряда qi до начального положения заряда q ,

ri 2 – расстояние от заряда qi до конечного положения заряда q .


ri 2 → ∞


Разность потенциалов. Эквипотенциальные поверхности

При перемещении заряда q 0+ в электростатическом поле из точки 1 в точку 2

r2 = ∞ → U 2 = U ∞ = 0


Потенциал – физическая величина, определяемая работой по перемещению единичного положительного заряда из данной точки в бесконечность.

Когда говорят о потенциале, то имеют ввиду разность потециалов ∆φ между рассматриваемой точкой и точкой, потенциал φ которой принят за 0.

Потенциал φ данной точки физического смысла не имеет, так как нельзя определить работу в данной точке.

Эквипотенциальные поверхности (поверхности равного потенциала)

1) во всех точках потенциал φ имеет одно и то же значение,

2) вектор напряженности электрического поля Е всегда нормален к эквипотенциальным поверхностям,

3) ∆φ между двумя любыми эквипотенциальными поверхностями одинакова


Для точечного заряда

φ = const .

r = const .

Для однородного поля эквипотенциальные поверхности – параллельные линии.


Работа по перемещению заряда по эквипотенциальной поверхности равна нулю.

так как φ 1 = φ 2.

20. Связь вектора напряженности Е иразности потенциалов.

Работа по перемещению заряда в электрическом поле:

Потенциальная энергия электрического поля зависит от координат x , y , z и является функцией U(x,y,z) .

При перемещении заряда:

(x+dx), (y+dy), (z+dz).

Изменение и потенциальной энергии:



Из (1)



Оператор набла (оператор Гамильтона).

Пусть два точечных заряда q 1 и q 2 находятся в вакууме на расстоянии r друг от друга. Можно показать, что потенциальная энергия их взаимодействия даётся формулой:

W = kq 1 q 2 /r (3)

Мы принимаем формулу (3) без доказательства. Две особенности данной формулы следует обсудить.

Во-первых, где находится нулевой уровень потенциальной энергии? Ведь потенциальная энергия, как видно из формулы (3), в нуль обратиться не может. Но на самом деле нулевой уровень существует, и находится он на бесконечности. Иными словами, когда заряды расположены бесконечно далеко друг от друга, потенциальная энергия их взаимодействия полагается равной нулю (что логично - в этом случае заряды уже «не взаимодействуют»). Во-вторых, q 1 и q 2 - это снова алгебраические величины зарядов, т.е. заряды с учётом их знака.

Например, потенциальная энергия взаимодействия двух одноимённых зарядов будет положительной. Почему? Если мы отпустим их, они начнут разгоняться и удаляться друг от друга.

Их кинетическая энергия возрастает, стало быть потенциальная энергия - убывает. Но на бесконечности потенциальная энергия обращается в нуль, а раз она убывает к нулю, значит - она является положительной.

А вот потенциальная энергия взаимодействия разноимённых зарядов оказывается отрицательной. Действительно, давайте удалим их на очень большое расстояние друг от друга - так что потенциальная энергия равна нулю - и отпустим. Заряды начнут разгоняться, сближаясь, и потенциальная энергия снова убывает. Но если она была нулём, то куда ей убывать? Только в сторону отрицательных значений.

Формула (3) помогает также вычислить потенциальную энергию системы зарядов, если число зарядов больше двух. Для этого нужно просуммировать энергии каждой пары зарядов. Мы не будем выписывать общую формулу; лучше проиллюстрируем сказанное простым примером, изображённым на рис. 8

Рис. 8.

Если заряды q 1 , q 2 , q 3 находятся в вершинах треугольника со сторонами a, b, c, то потенциальная энергия их взаимодействия равна:

W = kq 1 q 2 /a + kq 2 q 3 /b + kq 1 q 3 /c

Потенциал

Из формулы W = - qEx мы видим, что потенциальная энергия заряда q в однородном поле прямо пропорциональна этому заряду. То же самое мы видим из формулы W = kq 1 q 2 /r потенциальная энергия заряда q 1 , находящегося в поле точечного заряда q 2 , прямо пропорциональна величине заряда q 1 . Оказывается, это общий факт: потенциальная энергия W заряда q в любом электростатическом поле прямо пропорциональна величине q:

Величина ц уже не зависит от заряда, является характеристикой поля и называется потенциалом:

Так, потенциал однородного поля E в точке с абсциссой x равен:

Напомним, что ось X совпадает с линией напряжённости поля. Мы видим, что с ростом x потенциал убывает. Иными словами, вектор напряжённости поля указывает направление убывания потенциала. Для потенциала поля точечного заряда q на расстоянии r от него имеем:

Единицей измерения потенциала служит хорошо известный вам вольт. Из формулы (5) мы видим, что В = Дж / Кл.

Итак, теперь у нас есть две характеристики поля: силовая (напряжённость) и энергетическая (потенциал). У каждой из них имеются свои преимущества и недостатки. Какую именно характеристику удобнее использовать - зависит от конкретной задачи.

14) Потенциальная энергия заряда в электрическом поле. Работу, совершаемую силами электрического поля при перемещении положительного точечного заряда q из положения 1 в положение 2, представим как изменение потенциальной энергии этого заряда:

где Wп1 и Wп2 – потенциальные энергии заряда q в положениях 1 и 2. При малом перемещении заряда q в поле, создаваемом положительным точечным зарядом Q, изменение потенциальной энергии равно

При конечном перемещении заряда q из положения 1 в положение 2, находящиеся на расстояниях r1 и r2 от заряда Q,

Если поле создано системой точечных зарядов Q1, Q2,¼, Qn, то изменение потенциальной энергии заряда q в этом поле:

Приведённые формулы позволяют найти только изменение потенциальной энергии точечного заряда q, а не саму потенциальную энергию. Для определения потенциальной энергии необходимо условиться, в какой точке поля считать ее равной нулю. Для потенциальной энергии точечного заряда q, находящегося в электрическом поле, созданном другим точечным зарядом Q, получим

где C – произвольная постоянная. Пусть потенциальная энергия равна нулю на бесконечно большом расстоянии от заряда Q (при r ® ¥), тогда постоянная C = 0 и предыдущее выражение принимает вид

При этом потенциальная энергия определяется как работа перемещения заряда силами поля из данной точки в бесконечно удаленную. В случае электрического поля, создаваемого системой точечных зарядов, потенциальная энергия заряда q:

Потенциальная энергия системы точечных зарядов. В случае электростатического поля потенциальная энергия служит мерой взаимодействия зарядов. Пусть в пространстве существует система точечных зарядов Qi (i = 1, 2, ... , n). Энергия взаимодействия всех n зарядов определится соотношением

где r i j - расстояние между соответствующими зарядами, а суммирование производится таким образом, чтобы взаимодействие между каждой парой зарядов учитывалось один раз.

Магнитные взаимодействия: опыты Эрстеда и Ампера; магнитное поле; сила Лоренца, индукция магнитного поля; силовые линии магнитного поля; магнитное поле, создаваемое движущимся с постоянной скоростью точечным зарядом.

Магнитное поле - силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения , магнитная составляющая электромагнитного поля

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

Опыт Эрстеда показал, что электрические токи могут действовать на магниты, однако природа магнита в то время была совершенно таинственной. Ампер и другие вскоре открыли взаимодействие электрических токов друг с другом, проявляющееся, в частности, как притяжение между двумя параллельными проводами, по которым текут одинаково направленные токи. Это привело Ампера к гипотезе, что в магнитном веществе имеются постоянно циркулирующие электрические токи. Если такая гипотеза справедлива, то результат опыта Эрстеда можно объяснить взаимодействием гальванического тока в проволоке с микроскопическими токами, которые сообщают стрелке компаса особые свойства

Сила Лоренца - сила, с которой, в рамках классической физики, электромагнитное поледействует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью заряд лишь со стороны магнитного поля, нередко же полную силу - со стороны электромагнитного поля вообще , иначе говоря, со стороны электрического и магнитного полей. Выражается в СИ как:

Для непрерывного распределения заряда, сила Лоренца принимает вид:

где d F - сила, действующая на маленький элемент dq .

ИНДУКЦИЯ МАГНИТНОГО ПОЛЯ - векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой магнитное поле действует на заряд , движущийся со скоростью .

Более конкретно, - это такой вектор, что сила Лоренца , действующая со стороны магнитного поля на заряд , движущийся со скоростью , равна

где косым крестом обозначено векторное произведение, α - угол между векторами скорости и магнитной индукции (направление вектора перпендикулярно им обоим и направлено поправилу буравчика).

Действие магнитных полей на электрические токи: закон Био-Савара-Лапласа-Ампера и его применение для расчета силы, действующей со стороны однородного магнитного поля на отрезок тонкого прямого проводника с током; формула Ампера и ее значение в метрологии.

Рассмотрим произвольный проводник,в котором протекают токи:

dF= *ndV=[ ]*dV

З-н Био-Савара-Ампера для объемного тока:dF=jBdVsin . dF перпендикулярно ,т.е . направленно к нам. Возьмем тонкий проводник: , тогда для линейного эл-а тока з-н запишется в виде: dF=I [ ], т.е. dF=IBdlsin .

Задача 1! Имеется однородное магнитное поле. В нем нах-я отрезок провода,который имеет l и I.

d =I [ ], dF=IBdlsin , F=IBsin =IBlsin -сила Ампера.

1 Ампер-сила тока,при протекании которого по 2 || длинным,тонким проводникам,находящимся на расстоянии 1 м друг от друга действует сила равная 2*10^-7 Н на каждый метр их длины.

Задача 2! Есть 2 || длинных проводника, где l>>d,тогда d = , d d , . Тогда ф-а Ампера: *l.

Магнитный диполь: физическая модель и магнитный момент диполя; магнитное поле, создаваемое магнитным диполем; силы, действующие со стороны однородного и неоднородного магнитных полей на магнитный диполь.

ДИПОЛЬ МАГНИТНЫЙ аналог диполя электрического, к-рый можно представлять себе как два точечных магн. заряда , расположенных на расстоянии l друг от друга. Характеризуется дипольным моментом, равным по величине и направленным от .

Поля, создаваемые равными Д. м. вне области источников в вакууме (или в любой иной среде, магн. проницаемость к-рой =1), одинаковы, однако в средах с совпадение достигается, если только принять, что , т. е. считать, что дипольный момент зарядового Д. м. зависит от проницаемости

38. Теорема Гаусса для магнитного поля: интегральная и дифференциальная формы, физический смысл теоремы. Релятивистский характер магнитного поля: магнитные взаимодействия как релятивистское следствие электрических взаимодействий; взаимные преобразования электрических и магнитных полей.

Отсутствие в природе магнитных зарядов приводит к тому, что линии вектора В не имеют ни начала, ни конца. Поток вектора В через замкнутую поверхность должен быть равен нулю. Таким образом, для любого магнитного поля и произвольной замкнутой поверхности S имеет место условие

Эта формула выражает теорему Гаусса для вектора В : поток вектора магнитной индукции через любую замкнутую поверхность равен нулю.

В интегральной форме

1. Поток вектора электрического смещения через любую замкнутую поверхность, окружающую некоторый объем, равен алгебраической сумме свободных зарядов, находящихся внутри этой поверхности

Потенциальная энергия взаимодействия системы точечных зарядов и полная электростатическая энергия системы зарядов

Анимация

Описание

Потенциальную энергию взаимодействия двух точечных зарядов q 1 и q 2 , находящихся в вакууме на расстоянии r 12 друг от друга можно вычислить по:

(1)

Рассмотрим систему, состоящую из N точечных зарядов: q 1 , q 2 ,..., q n .

Энергия взаимодействия такой системы равна сумме энергий взаимодействия зарядов взятых попарно:

. (2)

В формуле 2 суммирование производится по индексам i и k (i № k ). Оба индекса пробегают, независимо друг от друга, значения от 0 до N . Слагаемые, для которых значение индекса i совпадает со значением индекса k не учитываются. Коэффициент 1/2 поставлен потому, что при суммировании потенциальная энергия каждой пары зарядов учитывается дважды. Формулу (2) можно представить в виде:

, (3)

где j i - потенциал в точке нахождения i -го заряда, создаваемый всеми остальными зарядами:

.

Энергия взаимодействия системы точечных зарядов, вычисляемая по формуле (3), может быть как положительной, так и отрицательной. Например она отрицательная для двух точечных зарядов противоположного знака.

Формула (3) определяет не полную электростатическую энергию системы точечных зарядов, а только их взаимную потенциальную энергию. Каждый заряд q i , взятый в отдельности обладает электрической энергией. Она называется собственной энергией заряда и представляет собой энергию взаимного отталкивания бесконечно малых частей, на которые его можно мысленно разбить. Эта энергия не учитывается в формуле (3). Учитывается только работа затрачиваемая на сближение зарядов q i , но не на их образование.

Полная электростатическая энергия системы точечных зарядов учитывает также работу, на образование зарядов q i из бесконечно малых порций электричества, переносимых из бесконечности. Полная электростатическая энергия системы зарядов всегда положительная. Это легко показать на примере заряженного проводника. Рассматривая заряженный проводник как систему точечных зарядов и учитывая одинаковое значение потенциала в любой точке проводника, из формулы (3) получим:

Эта формула дает полную энергию заряженного проводника, которая всегда положительна (при q>0 , j >0 , следовательно W>0 , если q<0 , то j <0 , но W>0 ).

Временные характеристики

Время инициации (log to от -10 до 3);

Время существования (log tc от -10 до 15);

Время деградации (log td от -10 до 3);

Время оптимального проявления (log tk от -7 до 2).

Диаграмма:

Технические реализации эффекта

Техническая реализация эффекта

Для наблюдения энергии взаимодействия системы зарядов достаточно подвесить на ниточках на расстоянии порядка 5 см друг от друга два легких проводящих шарика и зарядить их от расчески. Они отклонятся, то есть повысят свою потенциальную энергию в поле земного тяготения, что и делается за счет энергии их электростатического взаимодействия.

Применение эффекта

Эффект настолько фундаментален, что без преувеличения можно считать, что он применяется кв любой электротехнической и радиоэлектронной аппаратуре, использующий зарядовые накопители, то есть конденсаторы.

Литература

1. Савельев И.В. Курс общей физики.- М.: Наука, 1988.- Т.2.- С.24-25.

2. Сивухин Д.В. Общий курс физики.- М.: Наука, 1977.- Т.3. Электричество.- С.117-118.

Ключевые слова

  • электрический заряд
  • точечный заряд
  • потенциал
  • потенциальная энергия взаимодействия
  • полная электрическая энергия

Разделы естественных наук:

В пределах электростатики невозможно дать ответ на вопрос, где сосредоточена энергия конденсатора. Поля и заряды, их образовавшие, не могут существовать обособленно. Их не разделить. Однако переменные поля могут существовать независимо от возбуждавших их зарядов (излучение солнца, радиоволны, …), и они переносят энергию. Эти факты заставляют признать, что носителем энергии является электростатическое поле .

При перемещении электрических зарядов силы кулоновского взаимодействия совершают определенную работу dА . Работа, совершенная системой, определяется убылью энергии взаимодействия -dW зарядов

. (5.5.1)

Энергия взаимодействия двух точечных зарядов q 1 и q 2 , находящихся на расстоянии r 12 , численно равна работе по перемещению заряда q 1 в поле неподвижного заряда q 2 из точки с потенциалом в точку с потенциалом :

. (5.5.2)

Удобно записать энергию взаимодействия двух зарядов в симметричной форме

. (5.5.3)

Для системы из n точечных зарядов (рис. 5.14) в силу принципа суперпозиции для потенциала, в точке нахождения k -го заряда, можно записать:

Здесь φ k , i - потенциал i -го заряда в точке расположения k -го заряда. В сумме исключен потенциал φ k , k , т.е. не учитывается воздействие заряда самого на себя, равное для точечного заряда бесконечности.

Тогда взаимная энергия системы n зарядов равна:

(5.5.4)

Данная формула справедлива лишь в случае, если расстояние между зарядами заметно превосходит размеры самих зарядов.

Рассчитаем энергию заряженного конденсатора. Конденсатор состоит из двух, первоначально незаряженных, пластин. Будем постепенно отнимать у нижней пластины заряд dq и переносить его на верхнюю пластину (рис. 5.15).

В результате между пластинами возникнет разность потенциалов При переносе каждой порции заряда совершается элементарная работа

Воспользовавшись определением емкости получаем

Общая работа, затраченная на увеличение заряда пластин конденсатора от 0 до q , равна:

Эту энергию можно также записать в виде